Source code for descarteslabs.catalog.image

# Copyright 2018-2024 Descartes Labs.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import io
import json
import os.path
import warnings
from tempfile import NamedTemporaryFile

try:
    import collections.abc as abc
except ImportError:
    import collections as abc

from affine import Affine
import numpy as np

from descarteslabs.exceptions import BadRequestError, NotFoundError

from ..client.services.raster import Raster
from ..client.services.service import ThirdPartyService
from ..common.geo import AOI, GeoContext
from ..common.property_filtering import Properties
from ..common.shapely_support import geometry_like_to_shapely
from .attributes import (
    EnumAttribute,
    File,
    GeometryAttribute,
    ListAttribute,
    StorageState,
    Timestamp,
    TupleAttribute,
    TypedAttribute,
    parse_iso_datetime,
)
from .catalog_base import DocumentState, check_deleted
from .helpers import bands_to_list, cached_bands_by_product, download
from .image_types import DownloadFileFormat, ResampleAlgorithm
from .named_catalog_base import NamedCatalogObject
from .scaling import scaling_parameters
from .search import AggregateDateField, GeoSearch, SummarySearchMixin

properties = Properties()


[docs]class ImageSummaryResult(object): """ The readonly data returned by :py:meth:`SummaySearch.summary` or :py:meth:`SummaySearch.summary_interval`. Attributes ---------- count : int Number of images in the summary. bytes : int Total number of bytes of data across all images in the summary. products : list(str) List of IDs for the products included in the summary. interval_start: datetime For interval summaries only, a datetime representing the start of the interval period. """ def __init__( self, count=None, bytes=None, products=None, interval_start=None, **kwargs ): self.count = count self.bytes = bytes self.products = products self.interval_start = ( parse_iso_datetime(interval_start) if interval_start else None ) def __repr__(self): text = [ "\nSummary for {} images:".format(self.count), " - Total bytes: {:,}".format(self.bytes), ] if self.products: text.append(" - Products: {}".format(", ".join(self.products))) if self.interval_start: text.append(" - Interval start: {}".format(self.interval_start)) return "\n".join(text)
[docs]class ImageSearch(SummarySearchMixin, GeoSearch): # Be aware that the `|` characters below add whitespace. The first one is needed # avoid the `Inheritance` section from appearing before the auto summary. """A search request that iterates over its search results for images. The `ImageSearch` is identical to `Search` but with a couple of summary methods: :py:meth:`summary` and :py:meth:`summary_interval`. """ SummaryResult = ImageSummaryResult DEFAULT_AGGREGATE_DATE_FIELD = AggregateDateField.ACQUIRED
[docs] def collect(self, geocontext=None, **kwargs): """ Execute the search query and return the collection of the appropriate type. Parameters ---------- geocontext : shapely.geometry.base.BaseGeometry, descarteslabs.common.geo.Geocontext, geojson-like, default None # noqa: E501 AOI for the ImageCollection. Returns ------- ~descarteslabs.catalog.ImageCollection ImageCollection of Images returned from the search. Raises ------ BadRequestError If any of the query parameters or filters are invalid ~descarteslabs.exceptions.ClientError or ~descarteslabs.exceptions.ServerError :ref:`Spurious exception <network_exceptions>` that can occur during a network request. """ if geocontext is None: geocontext = self._intersects if geocontext is not None: kwargs["geocontext"] = geocontext return super(ImageSearch, self).collect(**kwargs)
[docs]class Image(NamedCatalogObject): """An image with raster data. Instantiating an image indicates that you want to create a *new* Descartes Labs catalog image. If you instead want to retrieve an existing catalog image use `Image.get() <descarteslabs.catalog.Image.get>`, or if you're not sure use `Image.get_or_create() <~descarteslabs.catalog.Image.get_or_create>`. You can also use `Image.search() <descarteslabs.catalog.Image.search>`. Also see the example for :py:meth:`~descarteslabs.catalog.Image.save`. Parameters ---------- client : CatalogClient, optional A `CatalogClient` instance to use for requests to the Descartes Labs catalog. The :py:meth:`~descarteslabs.catalog.CatalogClient.get_default_client` will be used if not set. kwargs : dict With the exception of readonly attributes (`created`, `modified`) and with the exception of properties (`ATTRIBUTES`, `is_modified`, and `state`), any attribute listed below can also be used as a keyword argument. Also see `~Image.ATTRIBUTES`. """ _doc_type = "image" _url = "/images" _default_includes = ["product"] # _collection_type set below due to circular import problems _upload_service = ThirdPartyService() # Geo referencing geometry = GeometryAttribute( doc="""str or shapely.geometry.base.BaseGeometry: Geometry representing the image coverage. *Filterable* (use :py:meth:`ImageSearch.intersects <descarteslabs.catalog.ImageSearch.intersects>` to search based on geometry) """ ) cs_code = TypedAttribute( str, doc="""str: The coordinate reference system used by the image as an EPSG or ESRI code. An example of a EPSG code is ``"EPSG:4326"``. One of `cs_code` and `projection` is required. If both are set and disagree, `cs_code` takes precedence. """, ) projection = TypedAttribute( str, doc="""str: The spatial reference system used by the image. The projection can be specified as either a proj.4 string or a a WKT string. One of `cs_code` and `projection` is required. If both are set and disagree, `cs_code` takes precedence. """, ) geotrans = TupleAttribute( min_length=6, max_length=6, coerce=True, attribute_type=float, doc="""tuple of six float elements, optional if `~StorageState.REMOTE`: GDAL-style geotransform matrix. A GDAL-style `geotransform matrix <https://gdal.org/user/raster_data_model.html#affine-geotransform>`_ that transforms pixel coordinates into the spatial reference system defined by the `cs_code` or `projection` attributes. """, ) x_pixels = TypedAttribute( int, doc="int, optional if `~StorageState.REMOTE`: X dimension of the image in pixels.", ) y_pixels = TypedAttribute( int, doc="int, optional if `~StorageState.REMOTE`: Y dimension of the image in pixels.", ) # Time dimensions acquired = Timestamp( doc="""str or datetime: Timestamp when the image was captured by its sensor or created. *Filterable, sortable*. """ ) acquired_end = Timestamp( doc="""str or datetime, optional: Timestamp when the image capture by its sensor was completed. *Filterable, sortable*. """ ) published = Timestamp( doc="""str or datetime, optional: Timestamp when the data provider published this image. *Filterable, sortable*. """ ) # Stored files storage_state = EnumAttribute( StorageState, doc="""str or StorageState: Storage state of the image. The state is `~StorageState.AVAILABLE` if the data is available and can be rastered, `~StorageState.REMOTE` if the data is not currently available. *Filterable, sortable*. """, ) files = ListAttribute( File, doc="list(File): The list of files holding data for this image." ) # Image properties area = TypedAttribute( float, coerce=True, doc="""float, optional: Surface area the image covers. *Filterable, sortable*. """, ) azimuth_angle = TypedAttribute( float, coerce=True, doc="""float, optional: Sensor azimuth angle in degrees. *Filterable, sortable*. """, ) bits_per_pixel = ListAttribute( TypedAttribute(float, coerce=True), doc="list(float), optional: Average bits of data per pixel per band.", ) bright_fraction = TypedAttribute( float, coerce=True, doc="""float, optional: Fraction of the image that has reflectance greater than .4 in the blue band. *Filterable, sortable*. """, ) brightness_temperature_k1_k2 = ListAttribute( ListAttribute(TypedAttribute(float, coerce=True)), doc="""list(list(float), optional: radiance to brightness temperature conversion coefficients. Outer list indexed by ``Band.vendor_order``, inner lists are ``[k1, k2]`` or empty if not applicable. """, ) c6s_dlsr = ListAttribute( ListAttribute(TypedAttribute(float, coerce=True)), doc="list(list(float), optional: DLSR conversion coefficients.", ) cloud_fraction = TypedAttribute( float, coerce=True, doc="""float, optional: Fraction of pixels which are obscured by clouds. *Filterable, sortable*. """, ) confidence_dlsr = TypedAttribute( float, coerce=True, doc="""float, optional: Confidence value for DLSR coefficients. *Filterable, sortable*. """, ) alt_cloud_fraction = TypedAttribute( float, coerce=True, doc="""float, optional: Fraction of pixels which are obscured by clouds. This is as per an alternative algorithm. See the product documentation in the `Descartes Labs catalog <catalog.descarteslabs.com>`_ for more information. *Filterable, sortable*. """, ) processing_pipeline_id = TypedAttribute( str, doc="""str, optional: Identifier for the pipeline that processed this image from raw data. *Filterable, sortable*. """, ) fill_fraction = TypedAttribute( float, coerce=True, doc="""float, optional: Fraction of this image which has data. *Filterable, sortable*. """, ) incidence_angle = TypedAttribute( float, coerce=True, doc="""float, optional: Sensor incidence angle in degrees. *Filterable, sortable*. """, ) radiance_gain_bias = ListAttribute( ListAttribute(TypedAttribute(float, coerce=True)), doc="""list(list(float), optional: radiance conversion gain and bias. Outer list indexed by ``Band.vendor_order``, inner lists are ``[gain, bias]`` or empty if not applicable. """, ) reflectance_gain_bias = ListAttribute( ListAttribute(TypedAttribute(float, coerce=True)), doc="""list(list(float), optional: reflectance conversion gain and bias. Outer list indexed by ``Band.vendor_order``, inner lists are ``[gain, bias]`` or empty if not applicable. """, ) reflectance_scale = ListAttribute( TypedAttribute(float, coerce=True), doc="list(float), optional: Scale factors converting TOA radiances to TOA reflectances.", ) roll_angle = TypedAttribute( float, coerce=True, doc="""float, optional: Applicable only to Landsat 8, roll angle in degrees. *Filterable, sortable*. """, ) solar_azimuth_angle = TypedAttribute( float, coerce=True, doc="""float, optional: Solar azimuth angle at capture time. *Filterable, sortable*. """, ) solar_elevation_angle = TypedAttribute( float, coerce=True, doc="""float, optional: Solar elevation angle at capture time. *Filterable, sortable*. """, ) temperature_gain_bias = ListAttribute( ListAttribute(TypedAttribute(float, coerce=True)), doc="""list(list(float), optional: surface temperature conversion coefficients. Outer list indexed by ``Band.vendor_order``, inner lists are ``[gain, bias]`` or empty if not applicable. """, ) view_angle = TypedAttribute( float, coerce=True, doc="""float, optional: Sensor view angle in degrees. *Filterable, sortable*. """, ) satellite_id = TypedAttribute( str, doc="""str, optional: Id of the capturing satellite/sensor among a constellation of many satellites. *Filterable, sortable*. """, ) # Provider info provider_id = TypedAttribute( str, doc="""str, optional: Id that uniquely ties this image to an entity as understood by the data provider. *Filterable, sortable*. """, ) provider_url = TypedAttribute( str, doc="str, optional: An external (http) URL that has more details about the image", ) preview_url = TypedAttribute( str, doc="""str, optional: An external (http) URL to a preview image. This image could be inlined in a UI to show a preview for the image. """, ) preview_file = TypedAttribute( str, doc="""str, optional: A GCS URL with a georeferenced image. Use a GCS URL (``gs://...```) with appropriate access permissions. This referenced image can be used to raster the image in a preview context, generally low resolution. It should be a 3-band (RBG) or a 4-band (RGBA) image suitable for visual preview. (It's not expected to conform to the bands of the products.) """, ) SUPPORTED_DATATYPES = ( "uint8", "int16", "uint16", "int32", "uint32", "float32", "float64", ) def __init__(self, **kwargs): super(Image, self).__init__(**kwargs) self._geocontext = None @property def geocontext(self): """ `~descarteslabs.common.geo.AOI`: A geocontext for loading this Image's original, unwarped data. These defaults are used: * resolution: resolution determined from the Image's ``geotrans`` * crs: native CRS of the Image (often, a UTM CRS) * bounds: bounds determined from the Image's ``geotrans``, ``x_pixels`` and ``y_pixels`` * bounds_crs: native CRS of the Image * align_pixels: False, to prevent interpolation snapping pixels to a new grid * geometry: None .. note:: Using this :class:`~descarteslabs.common.geo.GeoContext` will only return original, unwarped data if the Image is axis-aligned ("north-up") within the CRS. If its ``geotrans`` applies a rotation, a warning will be raised. In that case, use `Raster.ndarray` or `Raster.raster` to retrieve original data. (The :class:`~descarteslabs.common.geo.GeoContext` paradigm requires bounds for consistency, which are inherently axis-aligned.) """ if self._geocontext is None: shape = None bounds = None bounds_crs = None crs = self.cs_code or self.projection resolution = None geotrans = self.geotrans if geotrans is not None: geotrans = Affine.from_gdal(*geotrans) if not geotrans.is_rectilinear: # NOTE: this may still be an insufficient check for some CRSs, i.e. polar stereographic? warnings.warn( "The GeoContext will *not* return this Image's original data, " "since it's rotated compared to the grid of the CRS. " "The array will be 'north-up', with the data rotated within it, " "and extra empty pixels padded around the side(s). " "To get the original, unrotated data, you must use the Raster API: " "`descarteslabs.client.services.raster.Raster.ndarray(image.id, ...)`." ) if self.x_pixels is not None and self.y_pixels is not None: # prefer to raster by image shape, to best preserve original data. # upper-left, upper-right, lower-left, lower-right in pixel coordinates pixel_corners = [ (0, 0), (self.x_pixels, 0), (0, self.y_pixels), (self.x_pixels, self.y_pixels), ] geo_corners = [geotrans * corner for corner in pixel_corners] xs, ys = zip(*geo_corners) bounds = (min(xs), min(ys), max(xs), max(ys)) bounds_crs = crs shape = (self.y_pixels, self.x_pixels) else: x_res, y_res = geotrans._scaling if x_res != y_res: # if pixels aren't square (unlikely), we won't just pick a resolution, # the user has to figure that out. raise ValueError( "Image has no size and non-square pixels, so resolution is ambiguous. " "You must manually define a geocontext for this image." ) resolution = x_res self._geocontext = AOI( geometry=self.geometry, resolution=resolution, bounds=bounds, bounds_crs=bounds_crs, crs=crs, shape=shape, align_pixels=False, ) return self._geocontext @property def __geo_interface__(self): return self.geocontext.__geo_interface__ # convenience property @property def date(self): return self.acquired
[docs] @classmethod def search(cls, client=None, request_params=None, headers=None): """A search query for all images. Return an `~descarteslabs.catalog.ImageSearch` instance for searching images in the Descartes Labs catalog. This instance extends the :py:class:`~descarteslabs.catalog.Search` class with the :py:meth:`~descarteslabs.catalog.ImageSearch.summary` and :py:meth:`~descarteslabs.catalog.ImageSearch.summary_interval` methods which return summary statistics about the images that match the search query. Parameters ---------- client : :class:`CatalogClient`, optional A `CatalogClient` instance to use for requests to the Descartes Labs catalog. Returns ------- :class:`~descarteslabs.catalog.ImageSearch` An instance of the `~descarteslabs.catalog.ImageSearch` class Example ------- >>> from descarteslabs.catalog import Image >>> search = Image.search().limit(10) >>> for result in search: # doctest: +SKIP ... print(result.name) # doctest: +SKIP """ return ImageSearch( cls, client=client, request_params=request_params, headers=headers )
[docs] @check_deleted def upload(self, files, upload_options=None, overwrite=False): """Uploads imagery from a file (or files). Uploads imagery from a file (or files) in GeoTIFF or JP2 format to be ingested as an Image. The Image must be in the state `~descarteslabs.catalog.DocumentState.UNSAVED`. The `product` or `product_id` attribute, the `name` attribute, and the `acquired` attribute must all be set. If either the `cs_code` or `projection` attributes is set (deprecated), it must agree with the projection defined in the file, otherwise an upload error will occur during processing. Parameters ---------- files : str or io.IOBase or iterable of same File or files to be uploaded. Can be string with path to the file in the local filesystem, or an opened file (``io.IOBase``), or an iterable of either of these when multiple files make up the image. upload_options : `~descarteslabs.catalog.ImageUploadOptions`, optional Control of the upload process. overwrite : bool, optional If True, then permit overwriting of an existing image with the same id in the catalog. Defaults to False. Note that in all cases, the image object must have a state of `~descarteslabs.catalog.DocumentState.UNSAVED`. USE WITH CAUTION: This can cause data cache inconsistencies in the platform, and should only be used for infrequent needs to update the image file contents. You can expect inconsistencies to endure for a period afterwards. Returns ------- :py:class:`~descarteslabs.catalog.ImageUpload` An `~descarteslabs.catalog.ImageUpload` instance which can be used to check the status or wait on the asynchronous upload process to complete. Raises ------ ValueError If any improper arguments are supplied. DeletedObjectError If this image was deleted. """ from .image_upload import ImageUploadOptions, ImageUploadType if not self.id: raise ValueError("id field required") if not self.acquired: raise ValueError("acquired field required") if self.cs_code or self.projection: warnings.warn("cs_code and projection fields not permitted", FutureWarning) # raise ValueError("cs_code and projection fields not permitted") if self.state != DocumentState.UNSAVED: raise ValueError( "Image {} has been saved. Please use an unsaved image for uploading".format( self.id ) ) if not overwrite and Image.exists(self.id, self._client): raise ValueError( "Image {} already exists in the catalog. Please either use a new image id or overwrite=True".format( self.id ) ) if self.product.state != DocumentState.SAVED: raise ValueError( "Product {} has not been saved. Please save before uploading images".format( self.product_id ) ) # convert file to a list, validating and extracting file names if isinstance(files, str) or isinstance(files, io.IOBase): files = [files] elif not isinstance(files, abc.Iterable): raise ValueError( "Invalid files value: must be string, IOBase, or iterable of the same" ) filenames = [] for f in files: if isinstance(f, str): filenames.append(f) elif isinstance(f, io.IOBase): filenames.append(f.name) else: raise ValueError( "Invalid files value: must be string, IOBase, or iterable of the same" ) if not filenames: raise ValueError("Invalid files value has zero length") if not upload_options: upload_options = ImageUploadOptions() upload_options.upload_type = ImageUploadType.FILE upload_options.image_files = filenames return self._do_upload(files, upload_options)
[docs] @check_deleted def upload_ndarray( self, ndarray, upload_options=None, raster_meta=None, overviews=None, overview_resampler=None, overwrite=False, ): """Uploads imagery from an ndarray to be ingested as an Image. The Image must be in the state `~descarteslabs.catalog.DocumentState.UNSAVED`. The `product` or `product_id` attribute, the `name` attribute, and the `acquired` attribute must all be set. Either (but not both) the `cs_code` or `projection` attributes must be set, or the `raster_meta` parameter must be provided. Similarly, either the `geotrans` attribute must be set or `raster_meta` must be provided. Note that one of the spatial reference attributes (`cs_code` or `projection`), or the `geotrans` attribute can be specified explicitly in the image, or the `raster_meta` parameter can be specified. Likewise, `overviews` and `overview_resampler` can be specified explicitly, or via the `upload_options` parameter. Parameters ---------- ndarray : np.array, Iterable(np.array) A numpy array or list of numpy arrays with image data, either with 2 dimensions of shape ``(x, y)`` for a single band or with 3 dimensions of shape ``(band, x, y)`` for any number of bands. If providing a 3d array the first dimension must index the bands. The ``dtype`` of the array must also be one of the following: [``uint8``, ``int8``, ``uint16``, ``int16``, ``uint32``, ``int32``, ``float32``, ``float64``] upload_options : :py:class:`~descarteslabs.catalog.ImageUploadOptions`, optional Control of the upload process. raster_meta : dict, optional Metadata returned from the :meth:`Raster.ndarray() <descarteslabs.client.services.raster.Raster.ndarray>` request which generated the initial data for the `ndarray` being uploaded. Specifying `geotrans` and one of the spatial reference attributes (`cs_code` or `projection`) is unnecessary in this case but will take precedence over the value in `raster_meta`. overviews : list(int), optional Overview resolution magnification factors e.g. [2, 4] would make two overviews at 2x and 4x the native resolution. Maximum number of overviews allowed is 16. Can also be set in the `upload_options` parameter. overview_resampler : `ResampleAlgorithm`, optional Resampler algorithm to use when building overviews. Controls how pixels are combined to make lower res pixels in overviews. Can also be set in the `upload_options` parameter. overwrite : bool, optional If True, then permit overwriting of an existing image with the same id in the catalog. Defaults to False. Note that in all cases, the image object must have a state of `~descarteslabs.catalog.DocumentState.UNSAVED`. USE WITH CAUTION: This can cause data cache inconsistencies in the platform, and should only be used for infrequent needs to update the image file contents. You can expect inconsistencies to endure for a period afterwards. Raises ------ ValueError If any improper arguments are supplied. DeletedObjectError If this image was deleted. Returns ------- :py:class:`~descarteslabs.catalog.ImageUpload` An `~descarteslabs.catalog.ImageUpload` instance which can be used to check the status or wait on the asynchronous upload process to complete. """ from .image_upload import ImageUploadOptions, ImageUploadType if not self.id: raise ValueError("id field required") if not self.acquired: raise ValueError("acquired field required") if self.cs_code and self.projection: warnings.warn( "Only one of cs_code and projection fields permitted", FutureWarning, ) # raise ValueError("only one of cs_code and projection fields permitted") if self.state != DocumentState.UNSAVED: raise ValueError( "Image {} has been saved. Please use an unsaved image for uploading".format( self.id ) ) if not overwrite and Image.exists(self.id, self._client): raise ValueError( "Image {} already exists in the catalog. Please either use a new image id or overwrite=True".format( self.id ) ) if self.product.state != DocumentState.SAVED: raise ValueError( "Product {} has not been saved. Please save before uploading images".format( self.product_id ) ) if isinstance(ndarray, (np.ndarray, np.generic)): ndarray = [ndarray] elif not isinstance(ndarray, abc.Iterable): raise ValueError( "The array must be an instance of ndarray or an Iterable of ndarrays" "such as a list." ) # validate the shape of each ndarray # modify image data to shift axes to what ingest expects for idx, image_data in enumerate(ndarray): if not isinstance(image_data, (np.ndarray, np.generic)): raise ValueError(f"The item at index {idx} is not an ndarray") if len(image_data.shape) not in (2, 3): raise ValueError( "The array must have 2 dimensions (shape '(x, y)') or 3 dimensions with the band " "axis in the first dimension (shape '(band, x, y)'). The given array has shape " "'{}' instead.".format(image_data.shape) ) if image_data.dtype.name not in self.SUPPORTED_DATATYPES: raise ValueError( "The array has an unsupported data type {}. Only the following data types are supported: {}".format( image_data.dtype.name, ",".join(self.SUPPORTED_DATATYPES) ) ) if len(image_data.shape) == 3: scale_factor = 5 scaled_band_dim = image_data.shape[0] * scale_factor if ( scaled_band_dim > image_data.shape[1] or scaled_band_dim > image_data.shape[2] ): warnings.warn( "The shape '{}' of the given 3d-array looks like it might not have the band " "axis as the first dimension. Verify that your array conforms to the shape " "'(band, x, y)'".format(image_data.shape) ) # v1 ingest expects (X,Y,bands) ndarray[idx] = np.moveaxis(image_data, 0, -1) # default to raster_meta fields if not explicitly provided if raster_meta: if not self.geotrans: self.geotrans = raster_meta.get("geoTransform") if not self.cs_code and not self.projection: # doesn't yet exist! self.projection = raster_meta.get("coordinateSystem", {}).get("proj4") if not self.geotrans: raise ValueError("geotrans field or raster_meta parameter is required") if not self.cs_code and not self.projection: raise ValueError( "cs_code or projection field is required if " + "raster_meta parameter is not given" ) if not upload_options: upload_options = ImageUploadOptions() upload_options.upload_type = ImageUploadType.NDARRAY if overviews: upload_options.overviews = overviews if overview_resampler: upload_options.overview_resampler = overview_resampler # write all the ndarrays to files so that _do_upload can read them files = [] upload_size = 0 try: for image_data in ndarray: upload_size += image_data.nbytes tmp = NamedTemporaryFile(delete=False) files.append(tmp) np.save(tmp, image_data, allow_pickle=False) # From tempfile docs: # Whether the name can be used to open the file a second time, # while the named temporary file is still open, varies across # platforms (it can be so used on Unix; it cannot on Windows # NT or later) # We close the underlying file object so _do_upload can open # the path again in a cross platform compatible way. # Cleanup is manual in the finally block. tmp.close() file_names = [f.name for f in files] upload_options.upload_size = upload_size upload_options.image_files = file_names return self._do_upload(file_names, upload_options) finally: for file in files: try: os.unlink(file.name) except OSError: pass
[docs] def image_uploads(self): """A search query for all uploads for this image created by this user. Returns ------- :py:class:`~descarteslabs.catalog.Search` A :py:class:`~descarteslabs.catalog.Search` instance configured to find all uploads for this image. """ from .image_upload import ImageUpload return ImageUpload.search(client=self._client).filter( (properties.product_id == self.product_id) & (properties.image_id == self.id) )
# the upload implementation is broken out so it can be used from multiple methods def _do_upload(self, files, upload_options): from .image_upload import ImageUpload, ImageUploadStatus upload = ImageUpload( client=self._client, image=self, image_upload_options=upload_options ) upload.save() headers = {"content-type": "application/octet-stream"} for file, upload_url in zip(files, upload.resumable_urls): if isinstance(file, io.IOBase): if "b" not in file.mode: file.close() file = io.open(file.name, "rb") f = file else: f = io.open(file, "rb") try: self._upload_service.session.put(upload_url, data=f, headers=headers) finally: f.close() upload.status = ImageUploadStatus.PENDING upload.save() return upload
[docs] def coverage(self, geom): """ The fraction of a geometry-like object covered by this Image's geometry. Parameters ---------- geom : GeoJSON-like dict, :class:`~descarteslabs.common.geo.geocontext.GeoContext`, or object with __geo_interface__ Geometry to which to compare this Image's geometry Returns ------- coverage: float The fraction of ``geom``'s area that overlaps with this Image, between 0 and 1. Example ------- >>> import descarteslabs as dl >>> image = dl.catalog.Image.get("landsat:LC08:PRE:TOAR:meta_LC80270312016188_v1") # doctest: +SKIP >>> image.coverage(image.geometry.buffer(1)) # doctest: +SKIP 0.258370644415335 """ # noqa: E501 if isinstance(geom, GeoContext): shape = geom.geometry else: shape = geometry_like_to_shapely(geom) intersection = shape.intersection(self.geometry) return intersection.area / shape.area
[docs] def ndarray( self, bands, geocontext=None, crs=None, resolution=None, all_touched=None, mask_nodata=True, mask_alpha=None, bands_axis=0, raster_info=False, resampler=ResampleAlgorithm.NEAR, processing_level=None, scaling=None, data_type=None, progress=None, ): """ Load bands from this image as an ndarray, optionally masking invalid data. If the selected bands have different data types the resulting ndarray has the most general of those data types. This table defines which data types can be cast to which more general data types: * ``Byte`` to: ``UInt16``, ``UInt32``, ``Int16``, ``Int32``, ``Float32``, ``Float64`` * ``UInt16`` to: ``UInt32``, ``Int32``, ``Float32``, ``Float64`` * ``UInt32`` to: ``Float64`` * ``Int16`` to: ``Int32``, ``Float32``, ``Float64`` * ``Int32`` to: ``Float32``, ``Float64`` * ``Float32`` to: ``Float64`` * ``Float64`` to: No possible casts Parameters ---------- bands : str or Sequence[str] Band names to load. Can be a single string of band names separated by spaces (``"red green blue"``), or a sequence of band names (``["red", "green", "blue"]``). Names must be keys in ``self.properties.bands``. If the alpha band is requested, it must be last in the list to reduce rasterization errors. geocontext : :class:`~descarteslabs.common.geo.geocontext.GeoContext`, default None A :class:`~descarteslabs.common.geo.geocontext.GeoContext` to use when loading this Image. If ``None`` then the default geocontext of the image will be used. crs : str, default None if not None, update the gecontext with this value to set the output CRS. resolution : float, default None if not None, update the geocontext with this value to set the output resolution in the units native to the specified or defaulted output CRS. all_touched : float, default None if not None, update the geocontext with this value to control rastering behavior. mask_nodata : bool, default True Whether to mask out values in each band that equal that band's ``nodata`` sentinel value. mask_alpha : bool or str or None, default None Whether to mask pixels in all bands where the alpha band of the image is 0. Provide a string to use an alternate band name for masking. If the alpha band is available and ``mask_alpha`` is None, ``mask_alpha`` is set to True. If not, mask_alpha is set to False. bands_axis : int, default 0 Axis along which bands should be located in the returned array. If 0, the array will have shape ``(band, y, x)``, if -1, it will have shape ``(y, x, band)``. It's usually easier to work with bands as the outermost axis, but when working with large arrays, or with many arrays concatenated together, NumPy operations aggregating each xy point across bands can be slightly faster with bands as the innermost axis. raster_info : bool, default False Whether to also return a dict of information about the rasterization of the image, including the coordinate system WKT and geotransform matrix. Generally only useful if you plan to upload data derived from this image back to the Descartes Labs catalog, or use it with GDAL. resampler : `ResampleAlgorithm`, default `ResampleAlgorithm.NEAR` Algorithm used to interpolate pixel values when scaling and transforming the image to its new resolution or CRS. processing_level : str, optional How the processing level of the underlying data should be adjusted. Possible values depend on the product and bands in use. Legacy products support ``toa`` (top of atmosphere) and in some cases ``surface``. Consult the available ``processing_levels`` in the product bands to understand what is available. scaling : None, str, list, dict Band scaling specification. Please see :meth:`scaling_parameters` for a full description of this parameter. data_type : None, str Output data type. Please see :meth:`scaling_parameters` for a full description of this parameter. progress : None, bool Controls display of a progress bar. Returns ------- arr : ndarray Returned array's shape will be ``(band, y, x)`` if bands_axis is 0, ``(y, x, band)`` if bands_axis is -1. If ``mask_nodata`` or ``mask_alpha`` is True, arr will be a masked array. The data type ("dtype") of the array is the most general of the data types among the bands being rastered. raster_info : dict If ``raster_info=True``, a raster information dict is also returned. Example ------- >>> import descarteslabs as dl >>> image = dl.catalog.Image.get("landsat:LC08:PRE:TOAR:meta_LC80270312016188_v1") # doctest: +SKIP >>> arr = image.ndarray("red green blue", resolution=120.) # doctest: +SKIP >>> type(arr) # doctest: +SKIP <class 'numpy.ma.core.MaskedArray'> >>> arr.shape # doctest: +SKIP (3, 1995, 1962) >>> red_band = arr[0] # doctest: +SKIP Raises ------ ValueError If requested bands are unavailable. If band names are not given or are invalid. If the requested bands have incompatible dtypes. NotFoundError If a Image's ID cannot be found in the Descartes Labs catalog BadRequestError If the Descartes Labs Platform is given invalid parameters """ if geocontext is None: # Lose the image's geometry (which is only used as a cutline), # as it might cause some unexpected clipping when rasterizing, due # to imperfect simplified geometries used when native image CRS is not WGS84. geocontext = self.geocontext.assign(geometry=None) if crs is not None or resolution is not None: try: params = {} if crs is not None: params["crs"] = crs if resolution is not None: params["resolution"] = resolution geocontext = geocontext.assign(**params) except TypeError: raise ValueError( f"{type(geocontext)} geocontext does not support modifying crs or resolution" ) from None if all_touched is not None: geocontext = geocontext.assign(all_touched=all_touched) return self._ndarray( bands, geocontext, mask_nodata=mask_nodata, mask_alpha=mask_alpha, bands_axis=bands_axis, raster_info=raster_info, resampler=resampler, processing_level=processing_level, scaling=scaling, data_type=data_type, progress=progress, )
# the ndarray implementation is broken out so it can be used directly from ImageCollection def _ndarray( self, bands, geocontext, mask_nodata=True, mask_alpha=None, bands_axis=0, raster_info=False, resampler=ResampleAlgorithm.NEAR, processing_level=None, scaling=None, data_type=None, progress=None, ): if not (-3 < bands_axis < 3): raise ValueError( "Invalid bands_axis; axis {} would not exist in a 3D array".format( bands_axis ) ) bands = bands_to_list(bands) product_bands = cached_bands_by_product(self.product_id, self._client) scales, data_type = scaling_parameters( product_bands, bands, processing_level, scaling, data_type ) mask_nodata = bool(mask_nodata) alpha_band_name = "alpha" if isinstance(mask_alpha, str): alpha_band_name = mask_alpha mask_alpha = True elif mask_alpha is None: # if user does not set mask_alpha, only attempt to mask_alpha if # alpha band is exists in the image. mask_alpha = alpha_band_name in product_bands elif type(mask_alpha) is not bool: raise ValueError("'mask_alpha' must be None, a band name, or a bool.") drop_alpha = False if mask_alpha: if alpha_band_name not in product_bands: raise ValueError( "Cannot mask alpha: no {} band for the product '{}'. " "Try setting 'mask_alpha=False'.".format( alpha_band_name, self.product_id ) ) try: alpha_i = bands.index(alpha_band_name) except ValueError: bands.append(alpha_band_name) drop_alpha = True else: if alpha_i != len(bands) - 1: raise ValueError( "Alpha must be the last band in order to reduce rasterization errors" ) raster_params = geocontext.raster_params full_raster_args = dict( inputs=[self.id], order="gdal", bands=bands, scales=scales, data_type=data_type, resampler=resampler, processing_level=processing_level, masked=mask_nodata or mask_alpha, mask_nodata=mask_nodata, mask_alpha=mask_alpha, drop_alpha=drop_alpha, progress=progress, **raster_params, ) try: arr, info = Raster.get_default_client().ndarray(**full_raster_args) except NotFoundError: raise NotFoundError( "'{}' does not exist in the Descartes Labs catalog".format(self.id) ) from None except BadRequestError as e: msg = ( "Error with request:\n" "{err}\n" "For reference, Raster.ndarray was called with these arguments:\n" "{args}" ) msg = msg.format(err=e, args=json.dumps(full_raster_args, indent=2)) raise BadRequestError(msg) from None if len(arr.shape) == 2: # if only 1 band requested, still return a 3d array arr = arr[np.newaxis] if bands_axis != 0: arr = np.moveaxis(arr, 0, bands_axis) if raster_info: return arr, info else: return arr
[docs] def download( self, bands, geocontext=None, crs=None, resolution=None, all_touched=None, dest=None, format=DownloadFileFormat.TIF, resampler=ResampleAlgorithm.NEAR, processing_level=None, scaling=None, data_type=None, nodata=None, progress=None, ): """ Save bands from this image as a GeoTIFF, PNG, or JPEG, writing to a path. Parameters ---------- bands : str or Sequence[str] Band names to load. Can be a single string of band names separated by spaces (``"red green blue"``), or a sequence of band names (``["red", "green", "blue"]``). Names must be keys in ``self.properties.bands``. geocontext : :class:`~descarteslabs.common.geo.geocontext.GeoContext`, default None A :class:`~descarteslabs.common.geo.geocontext.GeoContext` to use when loading this image. If ``None`` then use the default context for the image. crs : str, default None if not None, update the gecontext with this value to set the output CRS. resolution : float, default None if not None, update the geocontext with this value to set the output resolution in the units native to the specified or defaulted output CRS. all_touched : float, default None if not None, update the geocontext with this value to control rastering behavior. dest : str or path-like object, default None Where to write the image file. * If None (default), it's written to an image file of the given ``format`` in the current directory, named by the image's ID and requested bands, like ``"sentinel-2:L1C:2018-08-10_10TGK_68_S2A_v1-red-green-blue.tif"`` * If a string or path-like object, it's written to that path. Any file already existing at that path will be overwritten. Any intermediate directories will be created if they don't exist. Note that path-like objects (such as pathlib.Path) are only supported in Python 3.6 or later. format : `DownloadFileFormat`, default `DownloadFileFormat.TIF` Output file format to use If a str or path-like object is given as ``dest``, ``format`` is ignored and determined from the extension on the path (one of ".tif", ".png", or ".jpg"). resampler : `ResampleAlgorithm`, default `ResampleAlgorithm.NEAR` Algorithm used to interpolate pixel values when scaling and transforming the image to its new resolution or SRS. processing_level : str, optional How the processing level of the underlying data should be adjusted. Possible values depend on the product and bands in use. Legacy products support ``toa`` (top of atmosphere) and in some cases ``surface``. Consult the available ``processing_levels`` in the product bands to understand what is available. scaling : None, str, list, dict Band scaling specification. Please see :meth:`scaling_parameters` for a full description of this parameter. data_type : None, str Output data type. Please see :meth:`scaling_parameters` for a full description of this parameter. nodata : None, number NODATA value for a geotiff file. Will be assigned to any masked pixels. progress : None, bool Controls display of a progress bar. Returns ------- path : str or None If ``dest`` is None or a path, the path where the image file was written is returned. If ``dest`` is file-like, nothing is returned. Example ------- >>> import descarteslabs as dl >>> image = dl.catalog.Image.get("landsat:LC08:PRE:TOAR:meta_LC80270312016188_v1") # doctest: +SKIP >>> image.download("red green blue", resolution=120.) # doctest: +SKIP "landsat:LC08:PRE:TOAR:meta_LC80270312016188_v1_red-green-blue.tif" >>> import os >>> os.listdir(".") # doctest: +SKIP ["landsat:LC08:PRE:TOAR:meta_LC80270312016188_v1_red-green-blue.tif"] >>> image.download( ... "nir swir1", ... "rasters/{geocontext.resolution}-{image_id}.jpg".format(geocontext=image.geocontext, image_id=image.id) ... ) # doctest: +SKIP "rasters/15-landsat:LC08:PRE:TOAR:meta_LC80270312016188_v1.tif" Raises ------ ValueError If requested bands are unavailable. If band names are not given or are invalid. If the requested bands have incompatible dtypes. If ``format`` is invalid, or the path has an invalid extension. NotFoundError If a image's ID cannot be found in the Descartes Labs catalog BadRequestError If the Descartes Labs Platform is given invalid parameters """ if geocontext is None: # Lose the image's geometry (which is only used as a cutline), # as it might cause some unexpected clipping when rasterizing, due # to imperfect simplified geometries used when native image CRS is not WGS84. geocontext = self.geocontext.assign(geometry=None) if crs is not None or resolution is not None: try: params = {} if crs is not None: params["crs"] = crs if resolution is not None: params["resolution"] = resolution geocontext = geocontext.assign(**params) except TypeError: raise ValueError( f"{type(geocontext)} geocontext does not support modifying crs or resolution" ) from None if all_touched is not None: geocontext = geocontext.assign(all_touched=all_touched) return self._download( bands, geocontext, dest=dest, format=format, resampler=resampler, processing_level=processing_level, scaling=scaling, data_type=data_type, nodata=nodata, progress=progress, )
# the download implementation is broken out so it can be used directly from ImageCollection def _download( self, bands, geocontext, dest=None, format=DownloadFileFormat.TIF, resampler=ResampleAlgorithm.NEAR, processing_level=None, scaling=None, data_type=None, nodata=None, progress=None, ): bands = bands_to_list(bands) scales, data_type = scaling_parameters( cached_bands_by_product(self.product_id, self._client), bands, processing_level, scaling, data_type, ) return download( inputs=[self.id], bands_list=bands, geocontext=geocontext, data_type=data_type, dest=dest, format=format, resampler=resampler, processing_level=processing_level, scales=scales, nodata=nodata, progress=progress, )
[docs] def scaling_parameters( self, bands, processing_level=None, scaling=None, data_type=None ): """ Computes fully defaulted scaling parameters and output data_type from provided specifications. This method makes accessible the scales and data_type parameters which will be generated and passed to the Raster API by methods such as :meth:`ndarray` and :meth:`download`. It is provided as a convenience to the user to aid in understanding how the ``scaling`` and ``data_type`` parameters will be handled by those methods. It would not usually be used in a normal workflow. Parameters ---------- bands : list List of bands to be scaled. processing_level : str, optional How the processing level of the underlying data should be adjusted. Possible values depend on the product and bands in use. Legacy products support ``toa`` (top of atmosphere) and in some cases ``surface``. Consult the available ``processing_levels`` in the product bands to understand what is available. scaling : None or str or list or dict, default None Supplied scaling specification, see below. data_type : None or str, default None Result data type desired, as a standard data type string (e.g. ``"Byte"``, ``"Uint16"``, or ``"Float64"``). If not specified, will be deduced from the ``scaling`` specification. Typically this is left unset and the appropriate type will be determined automatically. Returns ------- scales : list(tuple) The fully specified scaling parameter, compatible with the :class:`~descarteslabs.client.services.raster.Raster` API and the output data type. data_type : str The result data type as a standard GDAL type string. Raises ------ ValueError If any invalid or incompatible value is passed to any of the three parameters. Scaling is determined on a band-by-band basis, incorporating the user provided specification, the output data_type, and properties for the band, such as the band type, the band data type, and the ``default_range``, ``data_range``, and ``physical_range`` properties. Ultimately the scaling for each band will be resolved to either ``None`` or a tuple of numeric values of length 0, 2, or 4, as accepted by the Raster API. The result is a list (with length equal to the number of bands) of one of these values, or may be a None value which is just a shorthand equivalent for a list of None values. A ``None`` indicates that no scaling should be performed. A 0-tuple ``()`` indicates that the band data should be automatically scaled from the minimum and maximum values present in the image data to the display range 0-255. A 2-tuple ``(input-min, input-max)`` indicates that the band data should be scaled from the specified input range to the display range of 0-255. A 4-tuple ``(input-min, input-max, output-min, output-max)`` indicates that the band data should be scaled from the input range to the output range. In all cases, the scaling will be performed as a multiply and add, and the resulting values are only clipped as necessary to fit in the output data type. As such, if the input and output ranges are the same, it is effectively a no-op equivalent to ``None``. The support for scaling parameters in the Catalog API includes the concept of an automated scaling mode. The four supported modes are as follows. ``"raw"``: Equivalent to a ``None``, the data should not be scaled. ``"auto"``: Equivalent to a 0-tuple, the data should be scaled by the Raster service so that the actual range of data in the input is scaled up to the full display range (0-255). It is not possible to determine the bounds of this input range in the client as the actual band data is not accessible. ``"display"``: The data should be scaled from any specified input bounds, defaulting to the ``default_range`` property for the band, to the output range, defaulting to 0-255. ``"physical"``: The data should be scaled from the input range, defaulting to the ``data_range`` property for the band, to the output range, defaulting to the ``physical_range`` property for the band. The mode may be explicitly specified, or it may be determined implicitly from other characteristics such as the length and contents of the tuples for each band, or from the output data_type if this is explicitly specified (e.g. ``"Byte"`` implies display mode, ``"Float64"`` implies physical mode). If it is not possible to infer the mode, and a mode is required in order to fully determine the results of this method, an error will be raised. It is also an error to explicitly specify more than one mode, with several exceptions: auto and display mode are compatible, while a raw display mode for a band which is of type "mask" or type "class" does not conflict with any other mode specification. Normally the ``data_type`` parameter is not provided by the user, and is instead determined from the mode as follows. ``"raw"``: The data type that best matches the data types of all the bands, preserving the precision and range of the original data. ``"auto"`` and ``"display"``: ``"Byte"`` ``"physical"``: ``"Float64"`` The ``scaling`` parameter passed to this method can be any of the following: None: No scaling for all bands. Equivalent to ``[None, ...]``. str: Any of the four supported automatic modes as described above. list or Iterable: A list or similar iterable must contain a number of elements equal to the number of bands specified. Each element must either be a None, a 0-, 2-, or 4-tuple, or one of the above four automatic mode strings. The elements of each tuple must either be a numeric value or a string containing a valid numerical string followed by a "%" character. The latter will be interpreted as a percentage of the appropriate range (e.g. ``default_range``, ``data_range``, or ``physical_range``) according to the mode. For example, a tuple of ``("25%", "75%")`` with a ``default_range`` of ``[0, 4000]`` will yield ``(1000, 3000)``. dict or Mapping: A dictionary or similar mapping with keys corresponding to band names and values as accepted as elements for each band as with a list described above. Each band name is used to lookup a value in the mapping. If none is found, and the band is not of type "mask" or "class", then the special key ``"default_"`` is looked up in the mapping if it exists. Otherwise a value of ``None`` will be used for the band. This is strictly a convenience for constructing a list of scale values, one for each band, but can be useful if a single general-purpose mapping is defined for all possible or relevant bands and then reused across many calls to the different methods in the Catalog API which accept a ``scaling`` parameter. See Also -------- :doc:`Catalog Guide <guides/catalog>` : This contains many examples of the use of the ``scaling`` and ``data_type`` parameters. """ bands = bands_to_list(bands) return scaling_parameters( cached_bands_by_product(self.product_id, self._client), bands, processing_level, scaling, data_type, )
# Deal with circular import problem from .image_collection import ImageCollection # noqa: E402 Image._collection_type = ImageCollection